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We have assembled an atmospheric retrieval package for the reflected light spectra of gas- and ice- giants in order to inform the design and estimate the scientific return of future space-based coronagraph instruments. Such instruments will have a working
bandpass of ~0.4-1 microns and a resolving power R~70, and will enable the characterization of tens of exoplanets in the Solar neighborhood. The targets will be chosen form known RV giants, with estimated effective temperatures of ~100-600 K and masses
between 0.3 and 20 M_Jupiter. In this regime, both methane and clouds will have the largest effects on the observed spectra. Our retrieval code is the first to include cloud properties in the core set of parameters, along with methane abundance and surface
gravity. We consider three possible cloud structure scenarios, with 0, 1 or 2 cloud layers, respectively. The best-fit parameters for a given model are determined using either a Monte Carlo Markov Chain ensemble sampler, or nested sampling. The most favored
cloud structure is chosen by calculating the Bayes factors between different models. We present the performance of our retrieval technique applied to a set of representative model spectra, covering a SNR range form 5 to 20 and including possible noise
correlations over a 25 or 100 nanometer scale. Further, we have applied the technique to more realistic cases, namely simulated observations of Jupiter, Saturn, Uranus, and the gas-giant HD99492c¢, out of which only Jupiter is shown. In each case, we
determine the confidence levels associated with the methane and cloud detections, as a function of SNR and noise properties.

SIMULATED DATA VALIDATION AND TESTING
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We define the signal-to-noise as corresponding to the The cloud detection is >10a0.
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Albedo Data vs. Model ignal-to-noise result for generated data

Planel with 2 cloud i.ajers:

The methane detection is >4g and the cloud detection is >100. The methane abundance is well constrained, but slightly degenerate with P and g. We obtain upper limits on 1 and tight constraints on T for the lower cloud.
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RETRIEVAL

We have implemented both the affine-invariant Monte Carlo
Markov Chain ensemble sampler (emcee) and the nested

sampling algorithm Mult iNest to sample the posterior
distributions for parameter estimation and model selection.
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The planetary albedo is calculated assuming a simple cloud ol
model and taking the methane abundance and the surface
gravity as free parameters.

The significance of cloud and methane detection is determined
by comparing models containing 0, 1, or 2 clouds, or lacking
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log(fCH)=-3.15%% | loa(/CH)=-5. 1041 oa( fCH,)=—2. 74 REMARKS:
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Pressure-temperature profile = fixed

Phase angle = 0 (face on) The methane detection is >60 and the cloud

detection is >30.

There is no compelling evidence for a second
cloud.

* The limitations of the models can be
more important than the uncertainties
in the data.
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Constrained: single scattering albedo of the
lower cloud.

* The gravity can be independently
determined via the mass-radius
relationship for imaged RV planets, and
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